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ABSTRACT
=====================================================

Probabilistic models are developed for directional wind speeds in hurricane, thunder-
storm, and synoptic wind storms. The models, calibrated to data, are used to generate
synthetic directional wind speeds over periods of arbitrary length and assess the uncer-
tainty in the resulting extreme wind speeds. The generation uses MATLAB functions,
called dir−hurricane, bootstrap−par, and bootstrap−par−ts, that are available on
www.nist.gov/wind. The synthetic data generated by the models and MATLAB functions
developed in this study provide a rational tool for constructing synthetic directional wind
speed data that are statistically consistent with existing wind records. The developments
in this study are needed because large sets of synthetic data are required to assess the
performance of tall buildings and other structural systems under directional wind speeds.
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Chapter 1
INTRODUCTION

============================================

The assumption that wind effects are proportional to the square of the extreme wind
speeds, regardless of their direction, is used in building codes for the design of most rigid
structures. This assumption allows the estimation of wind effects with large mean recurrence
intervals (MRIs) from probabilistic models of extreme wind speeds calibrated to relatively
small observed data sets. However, for structures sensitive to wind directionality effects,
including special rigid structures and structures with significant dynamic response, the es-
timation of wind effects with large MRIs requires the use of time series of directional wind
speeds with length exceeding the length of the MRI of interest. To overcome this diffi-
culty, it is proposed to construct synthetic directional wind speed records that (1) have any
specified length and (2) are statistically consistent with available records. The construction
of synthetic wind records involves two steps. First, probabilistic models are developed for
directional wind speeds, and these models are calibrated to data. Second, the calibrated
models are used to generate synthetic directional wind speed records.

Data available for calibrating the proposed probabilistic models for directional wind
speeds are stored in matrices with n rows and d columns. The elements in the rows of
these matrices are wind speeds recorded in d directions during distinct wind events. The
calibration of the probabilistic models for directional wind speeds poses notable difficulties
since in practice many of the entries of the wind data matrices can be zero, so that the
number of non-zero wind speeds can be much smaller than the number of wind events. This
situation is particularly severe for thunderstorm and synoptic winds since both the number
n of wind events and the number of non-zero wind speeds are relatively small. Accordingly,
the construction and calibration of probabilistic models for thunderstorm and synoptic winds
must in many if not most cases be based, in addition to data, on heuristic considerations.

The probabilistic model for hurricane wind speeds is sufficiently general to describe
directional wind speeds in thunderstorms and synoptic storms. Nevertheless, if the number
of observations available for these storms is small, the hurricane model may not be useful for
modeling their wind speeds. For hurricane winds, the probabilistic model is based on transla-
tion vectors, discussed later in this report, and accounts in an approximate but conservative
manner for the correlation between directional wind speeds. For thunderstorm and synoptic
winds, the correlation between directional wind speeds is not modeled because the available
records are insufficient to estimate it reliably. The arrival rate of hurricane, thunderstorm,
and synoptic events is modeled by a homogeneous Poisson processes with mean rate inferred
from observations. The proposed probabilistic models calibrated to data are used to develop
MATLAB codes that (1) generate directional wind speeds for hurricane, thunderstorm, and
synoptic winds over specified periods and (2) assess the uncertainty in the generated wind
speeds using bootstrapping methods.

The report is organized as follows. Basic considerations on the probabilistic models
for directional wind speeds for hurricane, thunderstorm, and synoptic winds are presented
in Chapter 2. This chapter also explores effects of correlation between directional wind
speeds. Chapter 3 defines wind speeds with specified MRIs, presents calculations based on
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nominal structural demands with various MRIs, and examines the sector-by-sector method
for calculating wind speeds with given MRIs. Probabilistic wind speeds for hurricane winds
are defined and calibrated in Chapter 4. This chapter also outlines the steps of the Monte
Carlo algorithm used to generate directional wind speeds in hurricanes. Chapter 5 defines
and calibrates probabilistic models for directional wind speeds in thunderstorm and syn-
optic winds, and presents a Monte Carlo algorithm for generating directional wind speeds
for thunderstorm and synoptic events. Chapter 6 demonstrates the application of the MAT-
LAB functions for hurricane winds, including the construction of replicates for predicted wind
speeds with various MRIs obtained by bootstrapping. Concluding remarks are presented in
Chapter 7. Two appendices provide detailed information on the use of the MATLAB func-
tions for generating directional wind speeds and for uncertainty assessment. These computer
codes, named dir−hurricane, bootstrap−par, and bootstrap−par−ts, are available on
www.nist.gov/wind.
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Chapter 2
WIND SPEED MODEL

============================================

Let T1 < T2 < · · · denote the sequence of random arrival times of hurricane or other
extreme wind storms at a site. It is assumed that the random times {Tk, k = 1, 2, . . .} are
the jump times of an homogeneous Poisson process {N(t), t ≥ 0} of intensity λ > 0, so that
the average number of extreme wind events during a time t > 0 is equal to the expectation
E[N(t)] = λ t of N(t). The intensity of N can be estimated from data. For example, suppose
we have observed 30 extreme wind events at a site during a 10 year period. An estimate of
λ is λ̂ = 30/10 = 3 events/year. The time arrival model of extreme wind events can easily
be generalized to account for the possible seasonality of extreme wind events by letting λ to
be time dependent.

Let V (k) be a d-dimensional wind speed vector whose coordinates {Vk,i, i = 1, . . . , d}
are wind speeds recorded in d directions during the kth extreme wind event, that is, the
wind speed vector at time Tk. It is assumed that the wind speed vectors {V (k), k = 1, 2, . . .}
are independent copies of a d-dimensional random vector V with joint distribution F . In
view of the above considerations and assumptions, the proposed model for extreme wind
events is completely characterized by (1) the intensity λ of the Poisson model N and (2) the
distribution of V . As previously mentioned, the intensity λ of the Poisson process N can
be estimated from data by elementary calculations. However, the selection of the joint
distribution F of V is much more difficult because there are no general models for arbitrary
non-Gaussian joint distributions and the available data is insufficient for constructing reliable
empirical distributions for V .

Two different models are used for the distribution of V . For hurricanes, we assume that
V is a translation vector, that is, a nonlinear transformation of a d-dimensional Gaussian
vector. Translation vectors account in an approximate manner for the correlation between
directional wind speeds. Data on hurricanes available, for example, in the NIST database
(www.nist.gov/wind), are sufficient to calibrate this model of V , which can also be used
for thunderstorm and synoptic winds if sufficient data were available for these types of
storms. On the other hand, translation vectors cannot be used to describe thunderstorm
and synoptic winds if, as is the case for the data available for this study (that is, Automated
Surface Observing System (ASOS) data for Newark airport, NJ, LaGuardia airport, NY,
and Kennedy airport, NY), the number of observations is insufficient. For these types of
storms and data, we assume therefore that directional wind speeds are independent random
variables.

2.1 DIRECTIONAL WIND SPEEDS

Suppose the coordinates {Vi} of the wind speed vector V are defined by

Vi = F−1
i

(
Φ(Gi)

)
, i = 1, . . . , d, (1)

where {Fi, i = 1, . . . , d} denote arbitrary distributions, Φ denotes the distribution of the
standard Gaussian variable with mean 0 and variance 1, and {Gi, i = 1, . . . , d} are correlated
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standard Gaussian variables with covariance matrix ρ = {ρij = E[GiGj], i, j = 1, . . . , d}.
We note that (1) {Fi} are the distributions of the coordinates {Vi} of V , (2) Eq. 1 establishes
a one-to-one correspondence between the wind speed vector V and the Gaussian vector
G = (G1, . . . , Gd), (3) the correlation coefficients between (Gi, Gj) and (Vi, Vj) are similar
for positive values of ρij, and (4) V , referred to as a translation vector, is completely defined
by the marginal distributions {Fi, i = 1, . . . , d} and the covariance matrix ρ of G ([1],
Section 3.1.1).

Under the translation model in Eq. 1, the resulting model for directional extreme winds
is completely defined by the intensity λ of the Poisson process N , the covariance matrix ρ
of the Gaussian image G of V , and the marginal distributions {Fi} of V . These parameters
can be estimated from data and used subsequently in a Monte Carlo algorithm to generate
virtual wind time series of any length. As previously stated, we use the representation in
Eq. 1 for hurricane winds.

For thunderstorm and synoptic winds, we set ρ equal to the identity matrix, so that
the coordinates of G are independent standard Gaussian variables. Accordingly, the random
variables {Vi} defined by Eq. 1 are independent and follow the distributions {Fi}.

The following section examines dependence of wind speed maxima over wind directions
and elementary structural demands on the correlation between the coordinates {Vi} of the
wind speed vector V . These considerations are relevant only for models of hurricane winds.

2.2 CORRELATED DIRECTIONAL WIND SPEEDS

Let G′ and G′′ be d-dimensional standard Gaussian vectors with coordinates of mean
0, variance 1, and covariance matrices ρ′ = {ρ′ij = E[G′iG

′
j]} and ρ′′ = {ρ′′ij = E[G′′i G

′′
j ]}

such that ρ′ij ≤ ρ′′ij, i, j = 1, . . . , d. Then

P
(
∩di=1 {G′i ≤ ξi}

)
≤ P

(
∩di=1 {G′′i ≤ ξi}

)
(2)

by a corollary to the normal comparison lemma ([5], Corollary 4.2.3). This inequality holds
for the special case in whichG′ has independent coordinates andG′′ has positively correlated
coordinates, that is, ρ′ij = 0, i 6= j, and ρ′′ij ≥ 0 for i, j = 1, . . . , d.

The inequality in Eq. 2 extends directly to the wind speed vector X defined by Eq. 1,
since the events {Vi ≤ xi} and {Gi ≤ Φ

(
Fi(xi)

)
} have the same probability, Φ

(
Fi(xi)

)
,

i = 1, . . . , d, are monotonically increasing functions, and the correlation coefficient between
two distinct coordinates (Vi, Vj) of V is an increasing function of the correlation coefficient
ρij between the coordinates (Gi, Gj) of G ([1], Section 3.1.1).

Let V ′ = {V ′i } and V ′′ = {V ′′i } be wind speed vectors defined by Eq. 1 with G′ and G′′

in Eq. 2 in place of G. Recall that G′ and G′′ are standard Gaussian vectors with covariance
matrices such that ρ′ij ≤ ρ′′ij, i, j = 1, . . . , d. Then

P
(
∩di=1 {X ′i ≤ xi}

)
≤ P

(
∩di=1 {X ′′i ≤ xi}

)
, (3)

where xi = F−1
i

(
Φ(ξi)

)
, i = 1, . . . , d. Let F ′max and F ′′max be the distributions of V ′max =

max1≤i≤d{V ′i } and V ′′max = max1≤i≤d{V ′′i }, respectively. The MRIs R′ and R′′ for a wind
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speed v irrespective of direction under the models V ′ and V ′′, respectively, of a wind speed
vector V satisfy the inequality

R′(v) =
1

1− F ′max(v)
≤ 1

1− F ′′max(v)
= R′′(v), (4)

showing that the MRI of a wind speed v is shorter under the model with weaker correlation
between directional wind speeds. In other words, if the actual correlation of a wind speed
vector V is underestimated, the resulting wind speeds are conservative since they have
shorter MRIs than those corresponding to the correct correlation between directional wind
speeds.

Consider the special case in which G′, and, therefore, V ′ has independent coordinates,
that is, ρ′ij = 0, i 6= j, and V ′′ has positively correlated coordinates, that is, ρ′′ij ≥ 0. Then,
a relationship as in Eq. 4 holds with R′, so that the assumption of independence between
directional wind speeds is conservative if the actual correlation between directional wind
speeds are positive and the wind speed can be modeled by a translation vector.

For illustration, suppose the coordinates of the Gaussian image G of V in Eq. 1 are
equally and positively correlated, that is E[GiGj] = ρ ≥ 0, i, j = 1, . . . , d, i 6= j. The vector
G can be defined by

Gi =
√
ρW +

√
1− ρWi, i = 1, . . . , d, (5)

where W and Wi, i=1,. . . ,d, are independent standard Gaussian variables with mean 0 and
variance 1. That the variables Gi have the stated properties follow by direct calculations.
The coordinates of the image V of G are also equally correlated ([1], Section 3.1.1).

We present two examples illustrating the dependence of Fmax and wind speeds with
various MRIs on the correlation coefficient ρ of G, assumed to be positive.

Example 1. Records of yearly wind speed maxima observed in d = 8 directions at Tucson,
Arizona, from 1959 to 1970 yield means and standard deviations of wind speeds in these
directions of {µi, i = 1, . . . , 8} = {30.40, 35.93, 42.13, 44.37, 39.90, 37.97, 41.40, 35.73} in mph
and {σi, i = 1 . . . , 8} = {7.85, 11.34, 7.91, 9.26, 7.34, 4.31, 9.25, 6.74} in mph. Let V , d = 8,
denote these directional wind speeds assumed to follow the Extreme Type I distributions

Fi(x) = exp
(
− exp(−αi (x− ui))

)
, x ∈ R, (6)

where µi = ui+0.577216/αi and σ = π/(
√

6αi). We are interested in properties of the largest
wind speeds Vmax irrespective of direction, that is, the largest coordinate of V . Figure 1
shows wind speeds Vmax in Tucson with MRIs up to 10,000 years under the assumption that
the coordinates of V are independent and equally correlated with correlation coefficients
ρ = 0.7 and ρ = 0.999. Differences between wind speeds corresponding to independent and
correlated coordinates of V are negligible for ρ = 0.7. These differences become significant
for wind speed vectors with strongly correlated coordinates, for example, directional wind
speeds corresponding to ρ = 0.999.

We note that (1) the independence assumption yields conservative approximations in
agreement with our previous theoretical arguments and (2) Vmax provides a crude measure
of demand at a cross section in a structure if characterized by the same internal forces
irrespective of wind direction.
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Figure 1: Wind speeds in mph with MRIs up to 10,000 year at Tucson, Arizona

Example 2. Consider the wind environment in the previous examples and a structural
demand assumed to be dominated by wind speeds from a single direction, say direction 1,
so that P (V1 > x) � P (Vi > x) or, equivalently, F1(x) � Fi(x) ' 1 for i = 2, . . . , 8. If we
view wind speed as a measure of structural demand, the distribution of Vmax is

P (Vmax ≤ x) =
8∏
i=1

Fi(x) ' F1(x), (7)

and

P (Vmax ≤ x) = P
(
∩8
i=1 {Vi ≤ x}

)
= P

(
V1 ≤ x, α2 V1 + β2 ≤ x, . . . , α8 V1 + β8 ≤ x

)
= P

(
V1 ≤ x, V1 ≤ (x− β2)/α2, . . . , V1 ≤ (x− β8)/α8

)
' P (V1 ≤ x) = F1(x) (8)

under the assumptions that the coordinates of V are independent and perfectly correlated,
respectively, where Vi = αi V1 + βi, i = 2, . . . , 8, for perfectly correlated directional wind
speeds and (αi > 0, βi) are constants such that x� (x−βi)/αi. In this case, the dependence
between directional wind speeds has a negligible effect on nominal structural demand.
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Chapter 3
MEAN RECURRENCE INTERVALS FOR

WIND SPEEDS AND NOMINAL DEMANDS
============================================

Let X1, X2, . . . be a sequence of independent identically distributed real-valued random
variables with distribution Fx and N a homogeneous Poisson process of intensity λ. Consider
the random series taking the values X1, X2, . . . at the jump times 0 < T1 < T2 < · · · of N .
The average time between the jump times of N is 1/λ.

Suppose we retain from the above time series only those values exceeding an arbitrary
threshold a. The random times 0 < T ′1 < T ′2 < · · · of the non-zero values of the resulting
series define a new homogeneous Poisson process of intensity λ(a) = λ

(
1 − Fx(a)

)
. If λ is

measured in jumps/year, then 1/λ(a) gives the average number of years between consecutive
values of the original series exceeding a. The solution aR of

R =
1

λ
(
1− Fx(aR)

) (9)

is a level exceeded on average once every R years, and is referred to as threshold or level
with MRI R.

3.1 WIND SPEEDS AND STRUCTURAL DEMANDS

The joint distribution of V is

F (x) = P
(
∩di=1 {Xi ≤ xi}

)
= P

(
∩di=1 {Gi ≤ ξi}

)
, (10)

where ξi = F−1
i

(
Φ(xi)

)
denotes the image of xi, i = 1, . . . , d, in the Gaussian space (Eq. 1).

Since the events {Vmax = max1≤i≤d{Vi} ≤ x} and ∩di=1{Vi ≤ x} have the same probability,
the distribution Fmax of the largest wind speed Vmax irrespective of direction is

Fmax(x) = P
(
Vmax ≤ x

)
= P

(
∩di=1 {Vi ≤ x}

)
= P

(
∩di=1 {Gi ≤ ξ}

)
, (11)

where ξ = F−1
i

(
Φ(x)

)
.

Distributions of the type defined by Eq. 11 can be used to calculate wind speeds with
specified MRIs. For example, let V (1),V (2), . . . be a wind speed series consisting of inde-
pendent copies of V arriving at random times 0 < T1 < T2 < · · · defined by the jumps of
a homogeneous Poisson process of intensity λ jumps/year. Suppose we are interested in the
sequence V1,max, V2,max, . . . of extreme wind speeds irrespective of direction. The wind speed
vR of this series of MRI R years is the solution of (Eq. 9)

R =
1

λ
(
1− Fmax(vR)

) . (12)

Similar results hold for structural demands under wind loads. Let D
(1)
s , D

(2)
s , . . . be a

real-valued series of demands at a critical point s of a structure corresponding to a wind
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Figure 2: Nominal structural demands for q = 2 (left panel) and q = 2.8 (right panel) with
MRIs up to 10,000 year for Tucson, Arizona (non-dimensional)

speed series V (1),V (2), . . . with time step equal to the jump times of a homogeneous Poisson
process of intensity λ events/year. The construction of the demand series involves two

steps. First, design interaction formulas are used to calculate demands {D(k)
s,i , i = 1, . . . , d},

corresponding to the coordinates {V (k)
i , i = 1, . . . , d} a wind speed vector V (k). Second, the

demand sequence of interest in design is the series D
(k)
s = max1≤i≤d{D(k)

s,i }. The demand dR,s
of MRI R years at point s is the solution of (Eq. 9)

R =
1

λ
(
1− FDs(dR,s)

) , (13)

where FDs denotes the distribution of Ds.

Example 3. Nominal structural demand for rigid and flexible structures is proportional
to wind speed at power 2 and, say, 2.8, respectively ([7], p. 177). Accordingly, structural
demands at a point s in a structure caused by directional wind speeds {Vi} are assumed
to have the order of magnitude Ds,i = V q

i , where q = 2 and q = 2.8 for rigid and flexible
structures, respectively.

Figure 2 shows quasi-static and dynamic responses with MRIs up to 10,000 years gener-
ated by the directional wind speed in Example 1, that is, equally correlated Extreme Type 1
directional wind speeds calibrated to data in Tucson, Arizona. The solid, dashed, and dotted
lines correspond to correlation coefficients ρ = 0.0, 0.7, and 0.999. As for extreme winds in
Fig. 1, demands for both rigid and flexible structures are not sensitive to correlation, unless
the correlation is very strong, that is, the independence model is conservative.

3.2 SECTOR-BY-SECTOR METHOD

The sector-by-sector method defines structural demands with an MRI R as the largest

8



of the directional structural demands with this return period. Let {dR,si, i = 1, . . . , d} denote
structural demands with MRI R at point s in a structure corresponding to directional winds.
These demands are solutions of

R =
1

λ
(
1− FDs,i

(dR,si)
) , (14)

where FDs,i
is the distribution of demand at location s under wind speed Vi from direction

i. It is assumed that structural demand with MRI R is d∗R,s = max1≤i≤d dR,si.
Since

FDs(ξ) = P
(
∩dj=1 {Ds,j ≤ ξ}

)
≤ P

(
∩di=1 {Ds,i ≤ ξ}

)
= FDs,i

(ξ) (15)

and
1− 1/R = FDs,i

(dR,si) = FDs(dR,s) ≤ FDs,i
(dR,s), (16)

we have dR,s ≤ dR,si, i = 1, . . . , d, by the monotonicity of distribution functions, implying
dR,s ≤ d∗R,s = max1≤i≤d dR,si. Hence, R-year demands defined by the sector-by-sector method
over-predict actual R-year demands, showing that the method is unconservative.
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Chapter 4
WIND MODEL FOR HURRICANE WINDS

============================================

The proposed model for directional extreme wind speeds is completely specified by a
Poisson process N of intensity λ describing the time arrival of extreme wind events, and a
translation random vector V defining directional wind speeds in individual extreme wind
events. The defining parameters of the model are the intensity λ of N , the distributions {Fi}
of the coordinates {Vi}, i = 1, . . . , d, of V , and the covariance matrix {ρij}, i, j = 1, . . . , d,
of the Gaussian image G of V .

Our objectives are to (1) calibrate the wind model to data, (2) develop a Monte Carlo
algorithm for generating synthetic extreme wind speed records of any length that are consis-
tent with the available information, and (3) assess the sensitivity to statistical uncertainty
in wind speeds and structural demands with large MRIs.

4.1 MODEL CALIBRATION

Suppose that wind data consist of records of extreme directional wind speeds in d
directions recorded during n distinct events occurring over an ny year period. We use these
data to estimate the defining parameters of the wind model, that is, the intensity λ of N
and the probability law of V .

The average number λ of extreme wind speed events per year can be estimated by the
ratio λ̂ = n/ny. This estimator of λ is unbiased and has small uncertainty for the available

data since n is of the order 1,000. It is assumed that λ̂ = n/ny is the actual value of λ.
The calibration of the probability law of V is less simple and consists of two steps.

First, we estimate the the distributions {Fi} of the directional wind speeds {Vi}. Second, we
estimate the covariance matrix ρ of the Gaussian image G of V . We proceed with the first
step. Since various directional wind speed data are zero, we model the marginal distributions
{Fi} of the directional wind speeds {Vi} by

Fi(x) = qi 1(x ≥ 0) + (1− qi) F̃i(x), i = 1, . . . , d, (17)

where 1(A) denotes the indicator of set A, a function equal to 1 and 0 if A is true and
false, respectively, qi = P (Vi = 0) is the probability that Vi is 0 in an arbitrary extreme
wind event, and F̃i is a proper distribution characterizing the non-zero values of Vi. The
functional forms of the distributions F̃i are assumed known. We need to estimate both the
probabilities qi = P (Vi = 0) and the parameters of the distributions F̃i, i = 1, . . . , d.

The probability qi can be estimated by the ratio q̂i = ni/n, where ni is the number of
observed zero wind speeds in direction i = 1, . . . , d. This estimator of qi is unbiased, that
is, its mean is qi, with variance qi (1 − qi)/n and coefficient of variation

√
(1− qi)/qi/

√
n.

For the data set under consideration, n = 1, 000 and the probabilities qi are usually in the
range 0.4 to 0.9 so that its estimators are typically accurate. For example, for n = 1, 000 and
qi = 0.5, the coefficient of variation of the estimator of qi is 1/

√
n = 0.0316. The relatively

small uncertainty in the estimators of qi suggest to approximate qi by their estimates q̂i.
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We now estimate the parameters of the distributions {F̃i} assumed to have known
functional forms by using only the non-zero readings of directional wind speeds {Vi}. For
example, suppose {F̃i} are reverse Weibull distributions with parameters (αi, ηi, ci), and let
Y be a Weibull random variable with parameters α > 0, ξ ∈ R, and c > 0, distribution

F (y) =

 1− exp

[
−
(
y−ξ
α

)c]
, y > ξ

0 y ≤ ξ,
(18)

and density

f(y) =
c

α

(
y − ξ
α

)c−1

exp

[
−
(
y − ξ
α

)c]
, y > ξ. (19)

Values of distribution F (y) and solutions of F (yp) = p ∈ [0, 1] can be calculated by, for
example, the MATLAB functions F (y) = cdf(’wbl’, y−ξ, α, c) and yp−ξ = icdf(’wbl’, p, α, c).

The random variable X
d
= −Y has the distribution

F (x) = P (X ≤ x) = P (Y > −x) = exp
[
− (

η − x
α

)c
]
, x ≤ η = −ξ, (20)

and is called reverse Weibull variable. The expression of F in Eq. 20 coincides with that
in [8] (Equation A1.65a) depending on the parameters (σ, µ, γ) denoted here by (α, η, c).
Moments of any order of Y can be obtained from moments E

[
Ỹ q
]

= Γ(1 + q/c) of the scaled

random variable Ỹ defined by Y = ξ + α Ỹ ([3], Chapter 20). For example, the mean µy,
variance σ2

y, and skewness γy,3 of Y are

µy = ξ + αΓ(1 + 1/c)

σ2
y = α2

(
Γ(1 + 2/c)− Γ(1 + 1/c)2

)
γy,3 =

Γ(1 + 3/c)− 3 Γ(1 + 1/c) Γ(1 + 2/c) + 2 Γ(1 + 1/c)3(
Γ(1 + 2/c)− Γ(1 + 1/c)2

)3/2 . (21)

Let vi,1, vi,2, . . . , vi,n−ni
be non-zero wind speed data in a direction i = 1, . . . , d recorded

at a site assumed to follow a reverse Weibull distribution F̃i, where ni is the number of
zero wind speeds in direction i observed in n extreme wind speed events. Our objective
is to estimate the parameters (αi, ηi, ci) of F̃i. The method of moments, the method of
maximum likelihood, the method of probability-weighted moments, and other methods can
be used to estimate the parameters of this distribution ([4], Chapter 22). Extensive numerical
studies suggest that the method of moments delivers satisfactory estimators for the unknown
parameters of F̃i, in contrast to, for example, the maximum likelihood method that can
produce unstable estimators [6]. These features of the method of moments and its simplicity
are our reasons for using it to estimate the parameters (αi, ηi, ci) of the distributions {F̃i}.
The following 3 step algorithm can be used to estimate the parameters (αi, ηi, ci).

Step 1. Construct the record (y1 = −vi,1, y2 = −vi,2, . . . , yn−ni
= −vi,n−ni

). Since
(vi,1, vi,2, . . . , vi,n−ni

) are independent samples of a reverse Weibull distribution F̃i with
parameters (αi, ηi, ci), then (y1, . . . , yn−ni

) are independent samples of a Weibull dis-
tribution with parameters (α = αi, ξ = −ηi, c = ci).
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Step 2. Calculate estimates µ̂y, σ̂
2
y, and γ̂y,3 for the mean µy, variance σ2

y, and skewness

coefficient γy,3 from the sample (y1, . . . , yn−ni
). For example, µ̂y =

∑n−ni

i=1 yi/(n − ni),
m̂q =

∑n−ni

i=1

(
yi − µ̂y

)q
/(n− ni) are estimates of the central moments of order q ≥ 2,

σ̂2
y = m̂2, and γ̂q = m̂q/σ̂

q/2
y for q = 3, 4.

Step 3. Estimates the parameters (α, ξ, c) from Eq. 21. First, find an estimate ĉ for c
from the last equality in Eq. 21 with γ̂y,3 in place of γy,3. This nonlinear equation needs
to be solved by iterations. Second, find an estimate α̂ for α from the second equality
in Eq. 21 with (σ2

y , c) replaced by (σ̂2
y, ĉ). Third, find an estimate ξ̂ for ξ from the

first equality in Eq. 21 with (µy, α, c) replaced by (µ̂y, α̂, ĉ). If ξ̂ > min1≤j≤n−ni
{yj},

then set ξ̂ = min1≤j≤n−nj
{yj} and calculate (α̂, ĉ) from the first equalities in Eq. 21

with (µ̂y, σ̂
2
y) in place of (µy, σ

2
y). Set (αi = α̂, ηi = −ξ̂, ci = ĉ). Repeat these steps

for all directions i = 1, . . . , d to determine completely the parameters of the marginal
distributions of the wind speed vector V .

The last ingredient of the probability law of V under the translation model in Eq. 1 is
the covariance matrix ρ of G. The covariance matrix ρ can be estimated from the Gaussian
image of the available directional wind speed data defined by the mapping Gi = Φ−1

(
Fi(Vi)

)
,

i = 1, . . . , d, in Eq. 1. A direct use of this mapping causes numerical problems since the
distributions {Fi(x)} have discontinuities at x = 0. We eliminate this computational problem
by replacing zero readings in the data set with random noise of small intensity. Specifically,
we replace zero wind speeds with independent samples of a uniform random variable with
support (0, ε), where ε > 0 is a parameter smaller than all non-zero readings. Accordingly,
the mapping Vi 7→ Gi = Φ−1

(
Fi(Vi)

)
is replaced by Vi 7→ G∗i = Φ−1

(
F ∗i (V ∗i )

)
, where

F ∗i (x) = qi

[
x

ε
1(0 ≤ x ≤ ε) + 1(x > ε)

]
+ (1− qi) F̃i(x), i = 1, . . . , d, (22)

F̃i is as in Eq. 1, V ∗ is the modified wind speed vector, and G∗ is the Gaussian image of V ∗.
The covariance matrix ρ∗ of G∗ can be estimated from the Gaussian image of the modified
wind speed data by using standard statistical tools.

There are two sources of uncertainty in the estimated probability law of V , the marginal
distributions {Fi} and the covariance matrix of the Gaussian image of V . Since we postulate
the functional forms of {Fi}, the uncertainty in these distributions is limited to the uncer-
tainty in their estimated parameters. The construction of the Gaussian image of the wind
speed data involves modifications of the available wind record, so that there are modeling
errors. However, these errors are not relevant for design since they relate to very small wind
speeds. The modified and original wind data coincide for wind speeds relevant for design.
We use parametric bootstrapping to quantify approximately effects of the uncertainty in
the parameters of the probability law V on wind speeds and structural demands of various
MRI’s.

4.2 MONTE CARLO ALGORITHM

Once the probability law of the proposed directional wind speed model has been cali-
brated to a wind data recorded at a site, we can apply the following algorithm to generate
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directional wind speed records of any length that are consistent the date set. Suppose our
objective is to generate directional wind speed at a site under consideration over τ years. If
λ is the average number of extreme wind events in a year, the average number of extreme
wind events in τ years is nτ = [λ τ ] where [a] denotes the largest integer smaller than a.
Accordingly, the extreme wind environment of the site is described by nτ events.

The following three step algorithm can be used to generate extreme wind environments
at a site that are consistent with the available site data.

– Step 1. Generate samples g∗ = (g∗1, . . . , g
∗
d) of a d-dimensional standard Gaussian vector

G∗ with covariance matrix ρ∗. Various methods can be used to generate independent
samples of G∗ ([2], Section 5.2.1).

– Step 2. Calculate the image v∗ = (v∗1, . . . , v
∗
d) of g∗ defined by the mapping

v∗i =
(
F ∗i
)−1(

Φ(g∗i )
)
, i = 1, . . . , d. (23)

– Step 3. Repeat Steps 1 and 2 nτ times to generate a time series of directional extreme
wind speeds over τ years. The time arrivals of these extreme wind events are samples
of a Poisson process N of intensity λ.
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Chapter 5
WIND MODEL FOR THUNDERSTORM AND SYNOPTIC WINDS

============================================

Available data for thunderstorm and synoptic winds can be insufficient to estimate the
dependence between directional wind speeds and even the three parameters of the reverse
Weibull distribution we used for hurricane winds. It is assumed that directional wind speeds
are independent and have distributions defined by Eq. 17, where F̃i are the Extreme Type I
distributions

F̃i(x) = exp

{
− exp

[
− αi (x− ui)

]}
, x ∈ R, i = 1, . . . , d. (24)

The means {µi} and standard deviations {σi} of directional wind speeds are related to the
defining parameters (αi, ui) by the relationships

αi =
π√
6σi

ui = µi −
0.577216

αi
. (25)

The defining parameters of the probabilistic model for thunderstorm and synoptic winds
are the mean arrival rate λ of these wind events and the parameters {(αi, ui), i = 1, . . . , d}.
The mean arrival rate is estimated following the procedure for hurricanes. The relationships
in Eq. 25 can be used to find {(αi, ui), i = 1, . . . , d} from estimates of directional wind speed
means and standard deviations.

For the data sets used in the report, most wind directions have only zero readings, so
that the resulting estimates of qi and µi are zero. In the absence of additional information, the
user may choose to assume that these estimates are caused by insufficient data, and that qi
and µi on these directions should be similar to neighboring non-zero estimates. Accordingly,
regressions are developed for {µi} and {qi}. For the directions with a sufficiently string of
non-zero wind speeds, the estimates of qi and µi calculated from data are retained. For
the other directions qi and µi are those given by regressions. The coefficient of variation
corresponding to the direction with the largest number of non-zero readings is used in all
directions. With these assumptions the model for directional wind speeds in thunderstorm
and synoptic events is completely defined. We note that these considerations are heuristic.
Alternative procedures can be used to assign non-zero values to qi and µi in directions with
only zero readings.

Samples of directional wind speeds for thunderstorm and synoptic events can then be
obtained by elementary calculations. First, we generate d independent random numbers
(r1, . . . , rd) uniformly distributed in (0, 1). If ri ≤ qi, the wind speed in direction i is set
zero. Otherwise, the wind speed in this direction is (Eq. 24)

x = ui − ln
(
− ln(r)

)
/αi (26)

where r is a random number uniformly distributed in (0, 1).
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Chapter 6
NUMERICAL ILLUSTRATION FOR HURRICANES

============================================

The directional extreme wind speed series at Miami, milepost 1450, consists of n = 999
events with wind speeds measured in d = 16 directions. This data set is used to calibrate
the proposed model for directional extreme wind speeds, calculate wind speeds over a broad
range of MRIs irrespective of direction, and assess the uncertainty in the generated wind
speeds by parametric bootstrapping. The defining parameters of the directional extreme
winds are the mean arrival rate λ of events per year, the probabilities {qi = P (Vi = 0)} of
directional wind speeds being zero, the parameters of the distributions {F̃i} of the non-zero
values of directional wind speeds {Vi}, and the covariance matrix ρ∗ of the Gaussian image
G∗ of the modified wind speed vector V ∗.

6.1 MODEL CALIBRATION

The mean arrival rate of hurricane at this milepost is λ = 0.56 events per year, so that
n = 999 hurricanes span on average over a period of 999/0.56=1784 years. The estimates
of the probabilities qi = P (Vi = 0), i = 1, . . . , 16, are in the range [0.4140, 0.9450], so that
the number of non-zero values of directional wind speeds {Vi} in the data set is in the range
[55, 585]. Accordingly, the estimated parameters of the distributions {F̃i} of the non-zero
values of {Vi} will have different accuracies.

The Gaussian imageG∗ of the modified wind speed data set at Miami has been obtained
from the mapping defined by Eq. 22 with ε = 0.1, a value much smaller than values of wind
speeds relevant for design.

6.2 MONTE CARLO SIMULATION

The Monte Carlo simulation algorithm outlined in a previous section has been applied
to generate directional wind speed sequences with independent and dependent coordinates.
Both the independent and dependent wind speed vectors have the same marginal distri-
butions. The dependence between directional wind speeds correspond to that between the
coordinates of the Gaussian vector G∗.

Results are reported for the series of the largest wind speeds {Vk,max, k = 1, 2, . . .}
irrespective of direction. Similar results can be obtained for the sequence of structural de-
mands {D(k)

s , k = 1, 2, . . .} at an arbitrary structural point s caused by a series of directional
extreme winds {V (k), k = 1, 2, . . .}.

Figure 3 shows with heavy solid and dotted lines wind speeds vR of MRIs up to 1,800
years in Miami obtained by the proposed Monte Carlo algorithm with dependent and inde-
pendent directional wind speeds. As previously stated, the calculations are based on Eq. 12.
The assumption of independence between directional wind speeds is conservative in agree-
ment with results in Fig. 1. The thin solid line in the figure gives estimates of vR obtained
directly from data. Both model-based estimates of vR exceed those obtained directly from
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Figure 3: Data and model-based wind speeds in Miami for MRIs up to 1,800 years
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Figure 4: Data and model-based wind speeds in Miami for MRIs up to 18,000 years

data. That model-based estimates of vR are larger than those obtained directly from data
may be explained by the way in which the dependence between directional wind speeds is
represented. The dependence between directional wind speeds is ignored in the independent
model and is likely to underestimate the actual dependence in the dependent model since we
replace all zero readings in the data set with independent random variables. Figure 4 shows
similar plots as in Fig. 4 for larger MRIs. Since available data is limited, wind speeds of
large MRIs cannot be obtained directly from data, as illustrated by the thin solid line in this
figure which cannot be continued beyond approximately 1,800 years. On the other hand, the
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Figure 5: One hundred replicates of model-based wind speeds in Miami for MRIs up to 1,800
years

proposed Monte Carlo algorithm can be used to generate wind speeds of any MRI.

6.3 UNCERTAINTY IN MONTE CARLO ESTIMATES

We assess the statistical uncertainty in our estimates of the wind speeds vR by boot-
strapping. Classical bootstrapping using empirical distributions to generate replicates of
wind speed series is inadequate since vR is likely to be outside the range of data and all
replicates would take values in the range defined by data. To overcome this limitation, we
use parametric bootstrapping, that is, replicates are generated from probabilistic models for
directional wind speeds calibrated to data rather than empirical distributions given by data.
Accordingly, we use the Monte Carlo algorithm outlined in a previous section to generate
replicates of the directional extreme wind speeds at a site. Figure 5 shows 100 replicates of
the heavy solid line in Fig. 3, that is, wind speeds vR with return periods up to 1,800 years.
A histogram of the vR for an MRI R of approximately 1,786 years is shown in Fig. 6, and is
based on 100 replicates wind speeds vR produced by the proposed Monte Carlo algorithm.
The range of vR in these 100 replicates is approximately [110, 138] mph. Larger number of
replicates can be used to obtain ranges including vR with specified probabilities.
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Chapter 7
CONCLUSIONS

============================================

Directional wind speeds for periods much longer than commonly available records are
needed to estimate wind effects in a variety of structural systems including tall buildings.
Since wind records of the requisite size are not available, we propose to generate synthetic
directional wind speed records of the requisite length from probabilistic models calibrated
to data.

It has been shown that probabilistic models can be constructed for directional wind
speeds observed in hurricanes, thunderstorm, and synoptic winds, and that these models can
be calibrated to data. Since available records for thunderstorm and synoptic winds can be
relatively short and have numerous zero-readings, a simplified probabilistic model has been
used to describe their directional wind speeds. The model is based on the assumption that
the non-zero directional wind speeds are independent Extreme Type I variables. On the other
hand, the probabilistic model for directional wind speeds in hurricanes (or thunderstorms and
synoptic winds for which sufficient observations are available) accounts for the dependence
between directional wind speeds.

The probabilistic models for directional wind speeds in hurricanes, thunderstorm, and
synoptic winds have been used to develop MATLAB functions for (1) generating directional
wind speeds in extreme wind events spanning arbitrary time intervals and (2) assessing the
uncertainty in the generated wind speeds by bootstrapping. Appendices A and B outline
the use of these MATLAB codes and their main features.
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Appendix A
GENERATION OF DIRECTIONAL WIND SPEEDS

============================================

A MATLAB function dir−hurricane has been developed to generate wind speeds in a
specified number ns of extreme wind events that are consistent with data for hurricane, thun-
derstorm, and synoptic winds. The input and output variables for dir−hurricane are defined
in this function, and their definition is not repeated. We only mentioned that the generated
wind speeds are collected in (ns, d)-matrices called w−speed−MC and w−speed−IM−MC.

– For hurricane winds, the wind speeds in w−speed−MC and w−speed−IM−MC cor-
respond to models accounting for and disregarding the dependence between directional
wind speeds, respectively.

– For thunderstorm and synoptic winds, only independent directional wind speeds are
generated because of the limited number of data. The output matrices w−speed−MC
and w−speed−IM−MC are identical for these winds.

Directional wind speed data are loaded via a dialog allowing to select wind types and
sites. The steps for this selection are explained in the code.

A.1 MODEL FOR HURRICANE WINDS

It is assumed that directional wind speeds in hurricane winds follow reverse Weibull
distributions. Translation random vectors are used to capture the dependence between direc-
tional wind speeds. The calibration of this model in the MATLAB function dir−hurricane
follows the steps outlined in Sec. 4.1. The sample generation follows the algorithm in Sec. 4.2.

The d-dimensional output vector qv gives estimates of the directional probabilities
{qi} in Eq. 17. The d-dimensional output vectors alw, cw, and xiw give estimates of the
parameters {αi}, {ηi}, and {ci} of the directional reverse Weibull distributions defined in the
context of Eqs. 18 and 19. The (d, d) matrix covgxnew−est is an estimate of the covariance
matric ρ∗ of the standard Gaussian vectorG∗ defined in Sec. 4.1. The (ns, d)-output matrices
w−speed−MC and w−speed−IM−MC have already been defined.

A.2 MODEL FOR THUNDERSTORM AND SYNOPTIC WINDS

It is assumed that directional wind speeds in thunderstorm and synoptic follow a dis-
tribution of the type in Eq. 17 but they are independent and F̃i are the Extreme Type 1
distribution defined by Eqs. 24 and 25.

The input parameters cmin, cmax, nc, epsi, epsi−1 are not needed when deal-
ing with thunderstorm and synoptic winds; any values can be used for these parameters.
The d-dimensional output vector qv gives estimates of the directional probabilities {qi}.
The d-dimensional output vectors alw and xiw give estimates of the parameters {αi} and
{ui} of the distributions {F̃i} in Eq. 24. The output parameters cw and covgxnew−est

23



have no meaning. As previously state, the (ns, d)-output matrices w−speed−MC and
w−speed−IM−MC with generated directional wind speed data coincide.
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Appendix B
PARAMETRIC BOOTSTRAPPING

============================================

Two MATLAB functions bootstrap−par and bootstrap−par−ts are used to as-
sess our confidence in hurricane and in thunderstorm/synoptic wind speeds generated by
dir−hurricane. The input and output for bootstrap−par and bootstrap−par−ts are
defined in these functions, and their definitions are not repeated. We only mention that
w−speed−boot is a three-dimensional array of dimension (n, d, nb), where n = the number
of extreme wind events, d = the number of wind events, and nb = the number of replicates.

To run bootstrap−par and bootstrap−par−ts, the output of dir−hurricane needs
to be stored in the file boot for hurricane winds and the file boot−ts for thunderstorm
or synoptic winds. The boot file includes the vectors qv, alw, cw, xiw and the matrix
covgxnew−est. The boot−ts file includes the vectors qv, alw, xiw.
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